

Welcome to Deluca’s documentation!

Contents:

	deluca package
	Agents
	deluca.agents.Adaptive

	deluca.agents.Deep

	deluca.agents.DRC

	deluca.agents.GPC

	deluca.agents.Hinf

	deluca.agents.ILQR

	deluca.agents.LQR

	deluca.agents.PID

	deluca.agents.Zero

	deluca.agents.Agent

	Envs
	deluca.envs.classic.Acrobot

	deluca.envs.classic.CartPole

	deluca.envs.classic.MountainCar

	deluca.envs.classic.Pendulum

	deluca.envs.classic.PlanarQuadrotor

	deluca.envs.LDS

	deluca.envs.lung.Lung

	deluca.envs.BalloonLung

	deluca.envs.DelayLung

	deluca.envs.LearnedLung

	core
	deluca.core.JaxObject

	Apache License
	TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
	1. Definitions.

	2. Grant of Copyright License.

	3. Grant of Patent License.

	4. Redistribution.

	5. Submission of Contributions.

	6. Trademarks.

	7. Disclaimer of Warranty.

	8. Limitation of Liability.

	9. Accepting Warranty or Additional Liability.

	APPENDIX: How to apply the Apache License to your work

Indices and tables

	Index

	Module Index

	Search Page

deluca package

Agents

	deluca.agents.Adaptive(*args, **kwargs)

	

	deluca.agents.Deep(*args, **kwargs)

	Generic deep controller that uses zero-order methods to train on an environment.

	deluca.agents.DRC(*args, **kwargs)

	

	deluca.agents.GPC(*args, **kwargs)

	

	deluca.agents.Hinf(*args, **kwargs)

	Hinf: H-infinity controller (approximately).

	deluca.agents.ILQR(*args, **kwargs)

	

	deluca.agents.LQR(*args, **kwargs)

	

	deluca.agents.PID(*args, **kwargs)

	PID: agent that plays a PID policy

	deluca.agents.Zero(*args, **kwargs)

	Zero: agent that plays the zero action

	deluca.agents.Agent(*args, **kwargs)

	

Envs

	deluca.envs.classic.Acrobot(*args, **kwargs)

	Acrobot is a 2-link pendulum with only the second joint actuated. Initially, both links point downwards. The goal is to swing the end-effector at a height at least the length of one link above the base. Both links can swing freely and can pass by each other, i.e., they don’t collide when they have the same angle. STATE: The state consists of the sin() and cos() of the two rotational joint angles and the joint angular velocities : [cos(theta1) sin(theta1) cos(theta2) sin(theta2) thetaDot1 thetaDot2]. For the first link, an angle of 0 corresponds to the link pointing downwards. The angle of the second link is relative to the angle of the first link. An angle of 0 corresponds to having the same angle between the two links. A state of [1, 0, 1, 0, …, …] means that both links point downwards. ACTIONS: The action is either applying +1, 0 or -1 torque on the joint between the two pendulum links. REFERENCE: .. warning:: This version of the domain uses the Runge-Kutta method for integrating the system dynamics and is more realistic, but also considerably harder than the original version which employs Euler integration, see the AcrobotLegacy class.

	deluca.envs.classic.CartPole(*args, **kwargs)

	Description:

	deluca.envs.classic.MountainCar(*args, **kwargs)

	

	deluca.envs.classic.Pendulum(*args, **kwargs)

	

	deluca.envs.classic.PlanarQuadrotor(*args, …)

	

	deluca.envs.LDS(*args, **kwargs)

	

	deluca.envs.lung.Lung(*args, **kwargs)

	Todos:

	deluca.envs.BalloonLung(*args, **kwargs)

	Lung simulator based on the two-balloon experiment

	deluca.envs.DelayLung(*args, **kwargs)

	

	deluca.envs.LearnedLung(*args, **kwargs)

	

core

	deluca.core.JaxObject(*args, **kwargs)

	

deluca.agents.Adaptive

	
class deluca.agents.Adaptive(*args, **kwargs)

	
Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(T, base_controller, A, B[, …])

	Initialize self.

	__call__(x, A, B)

	Call self as a function.

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(x, A, B)

	Call self as a function.

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(x, A, B)

	Call self as a function.

	
__init__(T: int, base_controller, A: jax._src.numpy.lax_numpy.ndarray, B: jax._src.numpy.lax_numpy.ndarray, cost_fn: Callable[[jax._src.numpy.lax_numpy.ndarray, jax._src.numpy.lax_numpy.ndarray], numbers.Real] = None, HH: int = 10, eta: numbers.Real = 0.5, eps: numbers.Real = 1e-06, inf: numbers.Real = 1000000.0, life_lower_bound: int = 100, expert_density: int = 64) → None

	Initialize self. See help(type(self)) for accurate signature.

deluca.agents.Deep

	
class deluca.agents.Deep(*args, **kwargs)

	Generic deep controller that uses zero-order methods to train on an
environment.

Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(env_state_size, action_space[, …])

	Description: initializes the Deep agent

	reset()

	Description: reset agent

	policy(state, w)

	Description: Policy that maps state to action parameterized by w

	softmax_grad(softmax)

	Description: Vectorized softmax Jacobian

	__call__(state)

	Description: provide an action given a state

	feed(reward)

	Description: compute gradient and save with reward in memory for weight updates

	update()

	Description: update weights

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Description: provide an action given a state

	reset()

	Description: reset agent

	feed(reward)

	Description: compute gradient and save with reward in memory for weight updates

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state: jax._src.numpy.lax_numpy.ndarray)

	Description: provide an action given a state

	Parameters

	state (jnp.ndarray) –

	Returns

	action to take

	Return type

	jnp.ndarray

	
__init__(env_state_size, action_space, learning_rate: numbers.Real = 0.001, gamma: numbers.Real = 0.99, max_episode_length: int = 500, seed: int = 0) → None

	Description: initializes the Deep agent

	Parameters

	
	env (Env) – a deluca environment

	learning_rate (Real) –

	gamma (Real) –

	max_episode_length (int) –

	seed (int) –

	Returns

	None

	
feed(reward: numbers.Real) → None

	Description: compute gradient and save with reward in memory for weight updates

	Parameters

	reward (Real) –

	Returns

	None

	
policy(state: jax._src.numpy.lax_numpy.ndarray, w: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: Policy that maps state to action parameterized by w

	Parameters

	
	state (jnp.ndarray) –

	w (jnp.ndarray) –

	
reset() → None

	Description: reset agent

	Parameters

	None –

	Returns

	None

	
softmax_grad(softmax: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: Vectorized softmax Jacobian

	Parameters

	softmax (jnp.ndarray) –

	
update() → None

	Description: update weights

	Parameters

	None –

	Returns

	None

deluca.agents.DRC

	
class deluca.agents.DRC(*args, **kwargs)

	
Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(A, B[, C, K, cost_fn, m, h, …])

	Description: Initialize the dynamics of the model.

	__call__(obs)

	Description: Return the action based on current state and internal parameters.

	get_action(obs)

	Description: get action from state.

	update(obs, u)

	

	update_noise(obs)

	

	update_params(obs, u)

	Description: update agent internal state.

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(obs)

	Description: Return the action based on current state and internal parameters.

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(obs: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: Return the action based on current state and internal parameters.

	Parameters

	state (jnp.ndarray) – current state

	Returns

	action to take

	Return type

	jnp.ndarray

	
__init__(A: jax._src.numpy.lax_numpy.ndarray, B: jax._src.numpy.lax_numpy.ndarray, C: jax._src.numpy.lax_numpy.ndarray = None, K: jax._src.numpy.lax_numpy.ndarray = None, cost_fn: Callable[[jax._src.numpy.lax_numpy.ndarray, jax._src.numpy.lax_numpy.ndarray], numbers.Real] = None, m: int = 10, h: int = 50, lr_scale: numbers.Real = 0.03, decay: bool = True, RM: int = 1000, seed: int = 0) → None

	Description: Initialize the dynamics of the model.

	Parameters

	
	A (jnp.ndarray) – system dynamics

	B (jnp.ndarray) – system dynamics

	C (jnp.ndarray) – system dynamics

	Q (jnp.ndarray) – cost matrices (i.e. cost = x^TQx + u^TRu)

	R (jnp.ndarray) – cost matrices (i.e. cost = x^TQx + u^TRu)

	K (jnp.ndarray) – Starting policy (optional). Defaults to LQR gain.

	start_time (int) –

	cost_fn (Callable[[jnp.ndarray, jnp.ndarray], Real]) –

	H (postive int) – history of the controller

	HH (positive int) – history of the system

	lr_scale (Real) –

	decay (boolean) –

	seed (int) –

	
get_action(obs: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: get action from state.

	Parameters

	state (jnp.ndarray) –

	Returns

	jnp.ndarray

	
update_params(obs: jax._src.numpy.lax_numpy.ndarray, u: jax._src.numpy.lax_numpy.ndarray) → None

	Description: update agent internal state.

	Parameters

	state (jnp.ndarray) –

	Returns

	None

deluca.agents.GPC

	
class deluca.agents.GPC(*args, **kwargs)

	
Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(A, B[, Q, R, K, start_time, …])

	Description: Initialize the dynamics of the model.

	__call__(state)

	Description: Return the action based on current state and internal parameters.

	update(state, u)

	Description: update agent internal state.

	get_action(state)

	Description: get action from state.

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Description: Return the action based on current state and internal parameters.

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: Return the action based on current state and internal parameters.

	Parameters

	state (jnp.ndarray) – current state

	Returns

	action to take

	Return type

	jnp.ndarray

	
__init__(A: jax._src.numpy.lax_numpy.ndarray, B: jax._src.numpy.lax_numpy.ndarray, Q: jax._src.numpy.lax_numpy.ndarray = None, R: jax._src.numpy.lax_numpy.ndarray = None, K: jax._src.numpy.lax_numpy.ndarray = None, start_time: int = 0, cost_fn: Callable[[jax._src.numpy.lax_numpy.ndarray, jax._src.numpy.lax_numpy.ndarray], numbers.Real] = None, H: int = 3, HH: int = 2, lr_scale: numbers.Real = 0.005, decay: bool = True) → None

	Description: Initialize the dynamics of the model.

	Parameters

	
	A (jnp.ndarray) – system dynamics

	B (jnp.ndarray) – system dynamics

	Q (jnp.ndarray) – cost matrices (i.e. cost = x^TQx + u^TRu)

	R (jnp.ndarray) – cost matrices (i.e. cost = x^TQx + u^TRu)

	K (jnp.ndarray) – Starting policy (optional). Defaults to LQR gain.

	start_time (int) –

	cost_fn (Callable[[jnp.ndarray, jnp.ndarray], Real]) –

	H (postive int) – history of the controller

	HH (positive int) – history of the system

	lr_scale (Real) –

	lr_scale_decay (Real) –

	decay (Real) –

	
get_action(state: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: get action from state.

	Parameters

	state (jnp.ndarray) –

	Returns

	jnp.ndarray

	
update(state: jax._src.numpy.lax_numpy.ndarray, u: jax._src.numpy.lax_numpy.ndarray) → None

	Description: update agent internal state.

	Parameters

	state (jnp.ndarray) –

	Returns

	None

deluca.agents.Hinf

	
class deluca.agents.Hinf(*args, **kwargs)

	Hinf: H-infinity controller (approximately). Solves a lagrangian min-max
dynamic program similiar to H-infinity control rescales disturbance to have
norm 1.

Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(A, B, T[, Q, R])

	Description: initializes the Hinf agent

	train(A, B, T)

	

	__call__(state)

	Description: provide an action given a state

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Description: provide an action given a state

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state) → jax._src.numpy.lax_numpy.ndarray

	Description: provide an action given a state

	Parameters

	state (jnp.ndarray) – the error PID must compensate for

	Returns

	action to take

	Return type

	action (jnp.ndarray)

	
__init__(A: jax._src.numpy.lax_numpy.ndarray, B: jax._src.numpy.lax_numpy.ndarray, T: jax._src.numpy.lax_numpy.ndarray, Q: jax._src.numpy.lax_numpy.ndarray = None, R: jax._src.numpy.lax_numpy.ndarray = None) → None

	Description: initializes the Hinf agent

	Parameters

	
	A (jnp.ndarray) –

	B (jnp.ndarray) –

	T (jnp.ndarray) –

	Q (jnp.ndarray) –

	R (jnp.ndarray) –

	Returns

	None

deluca.agents.ILQR

	
class deluca.agents.ILQR(*args, **kwargs)

	
Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__()

	Initialize self.

	train(sim, train_steps[, U_init, alpha])

	

	reset()

	

	__call__(state)

	Call self as a function.

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Call self as a function.

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state)

	Call self as a function.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

deluca.agents.LQR

	
class deluca.agents.LQR(*args, **kwargs)

	
Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(A, B[, Q, R])

	Description: Initialize the infinite-time horizon LQR.

	__call__(state)

	Description: Return the action based on current state and internal parameters.

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Description: Return the action based on current state and internal parameters.

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state) → jax._src.numpy.lax_numpy.ndarray

	Description: Return the action based on current state and internal parameters.

	Parameters

	state (float/numpy.ndarray) – current state

	Returns

	action to take

	Return type

	jnp.ndarray

	
__init__(A: jax._src.numpy.lax_numpy.ndarray, B: jax._src.numpy.lax_numpy.ndarray, Q: jax._src.numpy.lax_numpy.ndarray = None, R: jax._src.numpy.lax_numpy.ndarray = None) → None

	Description: Initialize the infinite-time horizon LQR.
:param A: system dynamics
:type A: jnp.ndarray
:param B: system dynamics
:type B: jnp.ndarray
:param Q: cost matrices (i.e. cost = x^TQx + u^TRu)
:type Q: jnp.ndarray
:param R: cost matrices (i.e. cost = x^TQx + u^TRu)
:type R: jnp.ndarray

	Returns

	None

deluca.agents.PID

	
class deluca.agents.PID(*args, **kwargs)

	PID: agent that plays a PID policy

Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__([K, RC, dt])

	Description: initializes the PID agent

	__call__(state)

	Description: provide an action given a state

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Description: provide an action given a state

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: provide an action given a state

	Parameters

	state (jnp.ndarray) – the error PID must compensate for

	Returns

	action to take

	Return type

	jnp.ndarray

	
__init__(K: Sequence[int] = None, RC: numbers.Real = 0.5, dt: numbers.Real = 0.03, **kwargs) → None

	Description: initializes the PID agent

	Parameters

	
	K (Sequence[int]) – sequence of PID parameters

	RC (Real) – decay parameter

	dt (Real) – time increment

	Returns

	None

deluca.agents.Zero

	
class deluca.agents.Zero(*args, **kwargs)

	Zero: agent that plays the zero action

Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init__(shape)

	Description: iniitalizes the Zero agent

	__call__(state)

	Description: provide an action given a state

Inherited from Agent

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(state)

	Description: provide an action given a state

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(state: jax._src.numpy.lax_numpy.ndarray) → jax._src.numpy.lax_numpy.ndarray

	Description: provide an action given a state

	Parameters

	state (jnp.ndarray) – current state

	Returns

	action to take

	Return type

	action (jnp.ndarray)

	
__init__(shape: Sequence[int]) → None

	Description: iniitalizes the Zero agent

	Parameters

	shape – shape of the action the agent should take

	Returns

	None

Notes

	The Zero agent cannot, in this implementation, return a scalar
that passes jnp.isscalar; we can emulate via Zero(shape=()), whic
would return jnp.array(0.0)

deluca.agents.Agent

	
class deluca.agents.Agent(*args, **kwargs)

	
Public Data Attributes:

Inherited from JaxObject

	name

	

	attrs

	

Public Methods:

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__call__(observation)

	Call self as a function.

	reset()

	

	feed(reward)

	

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
__call__(observation)

	Call self as a function.

	
classmethod __init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

deluca.envs.classic.Acrobot

	
class deluca.envs.classic.Acrobot(*args, **kwargs)

	Acrobot is a 2-link pendulum with only the second joint actuated.
Initially, both links point downwards. The goal is to swing the
end-effector at a height at least the length of one link above the base.
Both links can swing freely and can pass by each other, i.e., they don’t
collide when they have the same angle.
STATE:
The state consists of the sin() and cos() of the two rotational joint
angles and the joint angular velocities :
[cos(theta1) sin(theta1) cos(theta2) sin(theta2) thetaDot1 thetaDot2].
For the first link, an angle of 0 corresponds to the link pointing downwards.
The angle of the second link is relative to the angle of the first link.
An angle of 0 corresponds to having the same angle between the two links.
A state of [1, 0, 1, 0, …, …] means that both links point downwards.
ACTIONS:
The action is either applying +1, 0 or -1 torque on the joint between
the two pendulum links.
REFERENCE:
.. warning:

This version of the domain uses the Runge-Kutta method for integrating
the system dynamics and is more realistic, but also considerably harder
than the original version which employs Euler integration,
see the AcrobotLegacy class.

Public Data Attributes:

	dt

	

	LINK_LENGTH_1

	

	LINK_LENGTH_2

	

	LINK_MASS_1

	[kg] mass of link 1

	LINK_MASS_2

	[kg] mass of link 2

	LINK_COM_POS_1

	[m] position of the center of mass of link 1

	LINK_COM_POS_2

	[m] position of the center of mass of link 2

	LINK_MOI

	moments of inertia for both links

	MAX_VEL_1

	

	MAX_VEL_2

	

	AVAIL_TORQUE

	

	torque_noise_max

	

	book_or_nips

	use dynamics equations from the nips paper or the book

	action_arrow

	

	domain_fig

	

	actions_num

	

	observation

	assume observations are fully observable

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([seed, horizon])

	Initialize self.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	step(action)

	Run one timestep of the environment’s dynamics.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

Private Methods:

	_terminal()

	

	_dsdt(augmented_state, t)

	

	
LINK_COM_POS_1 = 0.5

	[m] position of the center of mass of link 1

	
LINK_COM_POS_2 = 0.5

	[m] position of the center of mass of link 2

	
LINK_MASS_1 = 1.0

	[kg] mass of link 1

	
LINK_MASS_2 = 1.0

	[kg] mass of link 2

	
LINK_MOI = 1.0

	moments of inertia for both links

	
__init__(seed=0, horizon=50)

	Initialize self. See help(type(self)) for accurate signature.

	
book_or_nips = 'book'

	use dynamics equations from the nips paper or the book

	
property observation

	assume observations are fully observable

	Type

	NOTE

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.classic.CartPole

	
class deluca.envs.classic.CartPole(*args, **kwargs)

	
	Description:
	A pole is attached by an un-actuated joint to a cart, which moves along
a frictionless track. The pendulum starts upright, and the goal is to
prevent it from falling over by increasing and reducing the cart’s
velocity.

	Source:
	This environment corresponds to the version of the cart-pole problem
described by Barto, Sutton, and Anderson

	Observation:
	Type: Box(4)
Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle -24 deg 24 deg
3 Pole Velocity At Tip -Inf Inf

	Actions:
	Type: Discrete(2)
Num Action
0 Push cart to the left
1 Push cart to the right

Note: The amount the velocity that is reduced or increased is not
fixed; it depends on the angle the pole is pointing. This is because
the center of gravity of the pole increases the amount of energy needed
to move the cart underneath it

	Reward:
	Reward is 1 for every step taken, including the termination step

	Starting State:
	All observations are assigned a uniform random value in [-0.05..0.05]

	Episode Termination:
	Pole Angle is more than 12 degrees.
Cart Position is more than 2.4 (center of the cart reaches the edge of
the display).
Episode length is greater than 200. (not really - only in make, not in

the actual CartPoleEnv class)

Solved Requirements:
Considered solved when the average reward is greater than or equal to
195.0 over 100 consecutive trials.

Public Data Attributes:

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([reward_fn, seed])

	Initialize self.

	dynamics(state, action)

	None

	reset()

	Resets the environment to an initial state and returns an initial observation.

	step(action)

	Run one timestep of the environment’s dynamics.

	render([mode])

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	None

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(reward_fn=None, seed=0)

	Initialize self. See help(type(self)) for accurate signature.

	
dynamics(state, action)

	None

	
render(mode='human')

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes
	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):
	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):
	
	if mode == ‘rgb_array’:
	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:
	… # pop up a window and render

	else:
	super(MyEnv, self).render(mode=mode) # just raise an exception

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.classic.MountainCar

	
class deluca.envs.classic.MountainCar(*args, **kwargs)

	
Public Data Attributes:

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([goal_velocity, seed, horizon])

	Initialize self.

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

Private Methods:

	_height(xs)

	

	
__init__(goal_velocity=0, seed=0, horizon=50)

	Initialize self. See help(type(self)) for accurate signature.

	
render(mode='human')

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes
	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):
	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):
	
	if mode == ‘rgb_array’:
	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:
	… # pop up a window and render

	else:
	super(MyEnv, self).render(mode=mode) # just raise an exception

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.classic.Pendulum

	
class deluca.envs.classic.Pendulum(*args, **kwargs)

	
Public Data Attributes:

	max_speed

	

	max_torque

	

	high

	

	action_space

	

	observation_space

	

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([reward_fn, seed, horizon])

	Initialize self.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(reward_fn=None, seed=0, horizon=50)

	Initialize self. See help(type(self)) for accurate signature.

	
render(mode='human')

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes
	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):
	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):
	
	if mode == ‘rgb_array’:
	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:
	… # pop up a window and render

	else:
	super(MyEnv, self).render(mode=mode) # just raise an exception

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

deluca.envs.classic.PlanarQuadrotor

	
class deluca.envs.classic.PlanarQuadrotor(*args, **kwargs)

	
Public Data Attributes:

	metadata

	

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([placebo, autodiff, method])

	Initialize self.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	step(u)

	Run one timestep of the environment’s dynamics.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	

	check_action(action)

	

	check_observation(observation)

	

	step(u)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(u)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(placebo=0, autodiff=True, method='3-point')

	Initialize self. See help(type(self)) for accurate signature.

	
close()

	Override close in your subclass to perform any necessary cleanup.

Environments will automatically close() themselves when
garbage collected or when the program exits.

	
render(mode='human')

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes
	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):
	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):
	
	if mode == ‘rgb_array’:
	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:
	… # pop up a window and render

	else:
	super(MyEnv, self).render(mode=mode) # just raise an exception

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(u)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.LDS

	
class deluca.envs.LDS(*args, **kwargs)

	
Public Data Attributes:

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([state_size, action_size, A, B, C, …])

	Initialize self.

	step(action)

	Run one timestep of the environment’s dynamics.

	dynamics(state, action)

	None

	reset()

	Resets the environment to an initial state and returns an initial observation.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	None

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render([mode])

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(state_size=1, action_size=1, A=None, B=None, C=None, seed=0)

	Initialize self. See help(type(self)) for accurate signature.

	
dynamics(state, action)

	None

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.lung.Lung

	
class deluca.envs.lung.Lung(*args, **kwargs)

	
	Todos:
	
	Plot incrementally

	Save fig as fig.self

	Modify close to delete fig and accumulated data

Public Data Attributes:

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	render()

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render()

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
render()

	Renders the environment.

The set of supported modes varies per environment. (And some
environments do not support rendering at all.) By convention,
if mode is:

	human: render to the current display or terminal and
return nothing. Usually for human consumption.

	rgb_array: Return an numpy.ndarray with shape (x, y, 3),
representing RGB values for an x-by-y pixel image, suitable
for turning into a video.

	ansi: Return a string (str) or StringIO.StringIO containing a
terminal-style text representation. The text can include newlines
and ANSI escape sequences (e.g. for colors).

Note

	Make sure that your class’s metadata ‘render.modes’ key includes
	the list of supported modes. It’s recommended to call super()
in implementations to use the functionality of this method.

	Parameters

	mode (str) – the mode to render with

Example:

	class MyEnv(Env):
	metadata = {‘render.modes’: [‘human’, ‘rgb_array’]}

	def render(self, mode=’human’):
	
	if mode == ‘rgb_array’:
	return np.array(…) # return RGB frame suitable for video

	elif mode == ‘human’:
	… # pop up a window and render

	else:
	super(MyEnv, self).render(mode=mode) # just raise an exception

deluca.envs.BalloonLung

	
class deluca.envs.BalloonLung(*args, **kwargs)

	Lung simulator based on the two-balloon experiment

Source: https://en.wikipedia.org/wiki/Two-balloon_experiment

TODO:
- time / dt
- dynamics
- waveform
- phase

Public Data Attributes:

	observation

	assume observations are fully observable

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([leak, peep_valve, PC, P0, C, R, …])

	Initialize self.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	state: (volume, pressure) action: (u_in, u_out)

	step(action)

	Run one timestep of the environment’s dynamics.

Inherited from Lung

	render()

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	state: (volume, pressure) action: (u_in, u_out)

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render()

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(leak=False, peep_valve=5.0, PC=40.0, P0=0.0, C=10.0, R=15.0, dt=0.03, waveform=None, reward_fn=None)

	Initialize self. See help(type(self)) for accurate signature.

	
dynamics(state, action)

	state: (volume, pressure)
action: (u_in, u_out)

	
property observation

	assume observations are fully observable

	Type

	NOTE

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.DelayLung

	
class deluca.envs.DelayLung(*args, **kwargs)

	
Public Data Attributes:

	observation

	assume observations are fully observable

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__([min_volume, R_lung, C_lung, …])

	Initialize self.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	state: (volume, pressure) action: (u_in, u_out)

	step(action)

	Run one timestep of the environment’s dynamics.

Inherited from Lung

	render()

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	state: (volume, pressure) action: (u_in, u_out)

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render()

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(min_volume=1.5, R_lung=10, C_lung=6, delay=25, inertia=0.995, control_gain=0.02, dt=0.03, waveform=None, reward_fn=None)

	Initialize self. See help(type(self)) for accurate signature.

	
dynamics(state, action)

	state: (volume, pressure)
action: (u_in, u_out)

	
property observation

	assume observations are fully observable

	Type

	NOTE

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.envs.LearnedLung

	
class deluca.envs.LearnedLung(*args, **kwargs)

	
Public Data Attributes:

	observation

	assume observations are fully observable

Inherited from Env

	reward_range

	

	action_space

	

	observation_space

	

	observation

	assume observations are fully observable

Inherited from JaxObject

	name

	

	attrs

	

Inherited from Env

	metadata

	

	reward_range

	

	spec

	

	action_space

	

	observation_space

	

	unwrapped

	Completely unwrap this env.

Public Methods:

	__init__(weights[, pressure_mean, …])

	Initialize self.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	from_torch(path)

	

	dynamics(state, action)

	pressure: (u_in, u_out, normalized pressure) histories action: (u_in, u_out)

	step(action)

	Run one timestep of the environment’s dynamics.

Inherited from Lung

	render()

	Renders the environment.

Inherited from Env

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	check_spaces()

	

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	reset()

	Resets the environment to an initial state and returns an initial observation.

	dynamics(state, action)

	pressure: (u_in, u_out, normalized pressure) histories action: (u_in, u_out)

	check_action(action)

	

	check_observation(observation)

	

	step(action)

	Run one timestep of the environment’s dynamics.

	jacobian(func, state, action)

	

	hessian(func, state, action)

	

	close()

	Override close in your subclass to perform any necessary cleanup.

Inherited from JaxObject

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

Inherited from Env

	step(action)

	Run one timestep of the environment’s dynamics.

	reset()

	Resets the environment to an initial state and returns an initial observation.

	render()

	Renders the environment.

	close()

	Override close in your subclass to perform any necessary cleanup.

	seed([seed])

	Sets the seed for this env’s random number generator(s).

	__str__()

	Return str(self).

	__enter__()

	Support with-statement for the environment.

	__exit__(*args)

	Support with-statement for the environment.

	
__init__(weights, pressure_mean=0.0, pressure_std=1.0, PEEP=5, input_dim=3, history_len=5, dt=0.03, waveform=None, reward_fn=None)

	Initialize self. See help(type(self)) for accurate signature.

	
dynamics(state, action)

	pressure: (u_in, u_out, normalized pressure) histories
action: (u_in, u_out)

	
property observation

	assume observations are fully observable

	Type

	NOTE

	
reset()

	Resets the environment to an initial state and returns an initial
observation.

Note that this function should not reset the environment’s random
number generator(s); random variables in the environment’s state should
be sampled independently between multiple calls to reset(). In other
words, each call of reset() should yield an environment suitable for
a new episode, independent of previous episodes.

	Returns

	the initial observation.

	Return type

	observation (object)

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object) – an action provided by the agent

	Returns

	agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (bool): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	Return type

	observation (object)

deluca.core.JaxObject

	
class deluca.core.JaxObject(*args, **kwargs)

	
Public Data Attributes:

	name

	

	attrs

	

Public Methods:

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
classmethod __init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	
static __new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	
__setattr__(key, val)

	Implement setattr(self, name, value).

	
__str__()

	Return str(self).

Apache License

	Version

	2.0

	Date

	January 2004

	URL

	http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other
entities that control, are controlled by, or are under common control with that
entity. For the purposes of this definition, “control” means (i) the power,
direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising
permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation source, and
configuration files.

“Object” form shall mean any form resulting from mechanical transformation
or translation of a Source form, including but not limited to compiled object
code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is
included in or attached to the work (an example is provided in the Appendix
below).

“Derivative Works” shall mean any work, whether in Source or Object form,
that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a
whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

“Contribution” shall mean any work of authorship, including the original
version of the Work and any modifications or additions to that Work or
Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes
of this definition, “submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf
of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

	You must give any other recipients of the Work or Derivative Works a copy of
this License; and

	You must cause any modified files to carry prominent notices stating that You
changed the files; and

	You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to
any part of the Derivative Works; and

	If the Work includes a "NOTICE" text file as part of its distribution,
then any Derivative Works that You distribute must include a readable copy of
the attribution notices contained within such NOTICE file, excluding
those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes
only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License. You may add Your own
copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution
of Your modifications, or for any such Derivative Works as a whole, provided
Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms
of any separate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an “AS IS”
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of
using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License
or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction,
or any and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate
notice, with the fields enclosed by brackets “[]” replaced with your own
identifying information. (Don’t include the brackets!) The text should be
enclosed in the appropriate comment syntax for the file format. We also
recommend that a file or class name and description of purpose be included on
the same “printed page” as the copyright notice for easier identification within
third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | Z

_

 	
 	__call__() (deluca.agents.Adaptive method)

 	(deluca.agents.Agent method)

 	(deluca.agents.Deep method)

 	(deluca.agents.DRC method)

 	(deluca.agents.GPC method)

 	(deluca.agents.Hinf method)

 	(deluca.agents.ILQR method)

 	(deluca.agents.LQR method)

 	(deluca.agents.PID method)

 	(deluca.agents.Zero method)

 	__init__() (deluca.agents.Adaptive method)

 	(deluca.agents.Deep method)

 	(deluca.agents.DRC method)

 	(deluca.agents.GPC method)

 	(deluca.agents.Hinf method)

 	(deluca.agents.ILQR method)

 	(deluca.agents.LQR method)

 	(deluca.agents.PID method)

 	(deluca.agents.Zero method)

 	(deluca.envs.BalloonLung method)

 	(deluca.envs.classic.Acrobot method)

 	(deluca.envs.classic.CartPole method)

 	(deluca.envs.classic.MountainCar method)

 	(deluca.envs.classic.Pendulum method)

 	(deluca.envs.classic.PlanarQuadrotor method)

 	(deluca.envs.DelayLung method)

 	(deluca.envs.LDS method)

 	(deluca.envs.LearnedLung method)

 	
 	__init_subclass__() (deluca.agents.Agent class method)

 	(deluca.core.JaxObject class method), [1]

 	__new__() (deluca.core.JaxObject static method), [1]

 	__setattr__() (deluca.core.JaxObject method), [1]

 	__str__() (deluca.core.JaxObject method), [1]

A

 	
 	Acrobot (class in deluca.envs.classic)

 	
 	Adaptive (class in deluca.agents)

 	Agent (class in deluca.agents)

B

 	
 	BalloonLung (class in deluca.envs)

 	
 	book_or_nips (deluca.envs.classic.Acrobot attribute)

C

 	
 	CartPole (class in deluca.envs.classic)

 	
 	close() (deluca.envs.classic.PlanarQuadrotor method)

D

 	
 	Deep (class in deluca.agents)

 	DelayLung (class in deluca.envs)

 	DRC (class in deluca.agents)

 	dynamics() (deluca.envs.BalloonLung method)

 	(deluca.envs.classic.CartPole method)

 	(deluca.envs.DelayLung method)

 	(deluca.envs.LDS method)

 	(deluca.envs.LearnedLung method)

F

 	
 	feed() (deluca.agents.Deep method)

G

 	
 	get_action() (deluca.agents.DRC method)

 	(deluca.agents.GPC method)

 	
 	GPC (class in deluca.agents)

H

 	
 	Hinf (class in deluca.agents)

I

 	
 	ILQR (class in deluca.agents)

J

 	
 	JaxObject (class in deluca.core), [1]

L

 	
 	LDS (class in deluca.envs)

 	LearnedLung (class in deluca.envs)

 	LINK_COM_POS_1 (deluca.envs.classic.Acrobot attribute)

 	LINK_COM_POS_2 (deluca.envs.classic.Acrobot attribute)

 	
 	LINK_MASS_1 (deluca.envs.classic.Acrobot attribute)

 	LINK_MASS_2 (deluca.envs.classic.Acrobot attribute)

 	LINK_MOI (deluca.envs.classic.Acrobot attribute)

 	LQR (class in deluca.agents)

 	Lung (class in deluca.envs.lung)

M

 	
 	MountainCar (class in deluca.envs.classic)

O

 	
 	observation() (deluca.envs.BalloonLung property)

 	(deluca.envs.classic.Acrobot property)

 	(deluca.envs.DelayLung property)

 	(deluca.envs.LearnedLung property)

P

 	
 	Pendulum (class in deluca.envs.classic)

 	PID (class in deluca.agents)

 	
 	PlanarQuadrotor (class in deluca.envs.classic)

 	policy() (deluca.agents.Deep method)

R

 	
 	render() (deluca.envs.classic.CartPole method)

 	(deluca.envs.classic.MountainCar method)

 	(deluca.envs.classic.Pendulum method)

 	(deluca.envs.classic.PlanarQuadrotor method)

 	(deluca.envs.lung.Lung method)

 	reset() (deluca.agents.Deep method)

 	(deluca.envs.BalloonLung method)

 	(deluca.envs.classic.Acrobot method)

 	(deluca.envs.classic.CartPole method)

 	(deluca.envs.classic.MountainCar method)

 	(deluca.envs.classic.Pendulum method)

 	(deluca.envs.classic.PlanarQuadrotor method)

 	(deluca.envs.DelayLung method)

 	(deluca.envs.LDS method)

 	(deluca.envs.LearnedLung method)

S

 	
 	softmax_grad() (deluca.agents.Deep method)

 	step() (deluca.envs.BalloonLung method)

 	(deluca.envs.classic.Acrobot method)

 	(deluca.envs.classic.CartPole method)

 	(deluca.envs.classic.MountainCar method)

 	(deluca.envs.classic.PlanarQuadrotor method)

 	(deluca.envs.DelayLung method)

 	(deluca.envs.LDS method)

 	(deluca.envs.LearnedLung method)

U

 	
 	update() (deluca.agents.Deep method)

 	(deluca.agents.GPC method)

 	
 	update_params() (deluca.agents.DRC method)

Z

 	
 	Zero (class in deluca.agents)

deluca.core.JaxObject

	
class deluca.core.JaxObject(*args, **kwargs)

	
Public Data Attributes:

	name

	

	attrs

	

Public Methods:

	__new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	__init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	__str__()

	Return str(self).

	__setattr__(key, val)

	Implement setattr(self, name, value).

	save(path)

	

	load(path)

	

	throw(err, msg)

	

	
classmethod __init_subclass__(*args, **kwargs)

	For avoiding a decorator for each subclass

	
static __new__(cls, *args, **kwargs)

	For avoiding super().__init__()

	
__setattr__(key, val)

	Implement setattr(self, name, value).

	
__str__()

	Return str(self).

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Deluca’s documentation!

 		
 deluca package

 		
 Agents

 		
 deluca.agents.Adaptive

 		
 deluca.agents.Deep

 		
 deluca.agents.DRC

 		
 deluca.agents.GPC

 		
 deluca.agents.Hinf

 		
 deluca.agents.ILQR

 		
 deluca.agents.LQR

 		
 deluca.agents.PID

 		
 deluca.agents.Zero

 		
 deluca.agents.Agent

 		
 Envs

 		
 deluca.envs.classic.Acrobot

 		
 deluca.envs.classic.CartPole

 		
 deluca.envs.classic.MountainCar

 		
 deluca.envs.classic.Pendulum

 		
 deluca.envs.classic.PlanarQuadrotor

 		
 deluca.envs.LDS

 		
 deluca.envs.lung.Lung

 		
 deluca.envs.BalloonLung

 		
 deluca.envs.DelayLung

 		
 deluca.envs.LearnedLung

 		
 core

 		
 deluca.core.JaxObject

 		
 Apache License

 		
 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 		
 1. Definitions.

 		
 2. Grant of Copyright License.

 		
 3. Grant of Patent License.

 		
 4. Redistribution.

 		
 5. Submission of Contributions.

 		
 6. Trademarks.

 		
 7. Disclaimer of Warranty.

 		
 8. Limitation of Liability.

 		
 9. Accepting Warranty or Additional Liability.

 		
 APPENDIX: How to apply the Apache License to your work

